Schwartz, Greg, PhD



Schwartz, Greg, PhD


Assistant Professor


Office Phone


Office Fax



Ophthalmology, Physiology


Tarry 5-733


Areas of Research

Computational, Electrophysiology, Imaging & Microscopy, Sensory Systems

NU Scholar Profile

Current Research

Current Research

Research in our lab focuses on the circuit mechanisms underlying sensory computation. We use the mouse retina as a model system because it allows us to stimulate the circuit precisely with its natural input, patterns of light, and record its natural output, the spike trains of retinal ganglion cells. We harness the power of genetic manipulations and detailed information about cell types to uncover new circuits and discover their role in visual processing. Our methods include electrophysiology, computational modeling, and circuit tracing using a variety of imaging techniques.

Selected Publications

Selected Publications

Original research articles

Grimes, W.N.*, Schwartz, G.W.*, and Rieke, F. (2014). The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina. Neuron 82, 460–473.

Okawa, H., Santina, Della, L., Schwartz, G.W., Rieke, F., and Wong, R.O.L. (2014). Interplay of cell-autonomous and nonautonomous mechanisms tailors synaptic connectivity of converging axons in vivo. Neuron 82, 125–137.

Bleckert A., Schwartz, G.W., Turner, M.H., Rieke, F., and Wong, R.O.L. Visual space is represented by non-matching topographies of distinct mouse retinal ganglion cell types. Current Biology 24, 310-315 (2014).

Schwartz, G.W. & Rieke, F. Controlling gain one photon at a time. Elife. May 14, (2013).

Chen, E., Marre, O., Fisher, C., Schwartz, G., Levy, J., da Silveira, R., Berry II, M. Alert Response to Motion Onset in the Retina., J Neurosci. 33, 120-32 (2013).

Schwartz, G. W., Okawa, H., Dunn, F. A., Morgan, J. L., Kerschensteiner, D., Wong, R. O. & Rieke, F. The spatial structure of a nonlinear receptive field. Nature Neurosci. 15, 1572-1580 (2012).

Schwartz, G.*, Macke, J.*, Amodei, D., Tang, H. & Berry, M. J. II. Low Error Discrimination using a Correlated Population Code. J Neurophysiol. 108, 1069-1088 (2012).

Soo, F. S., Schwartz, G. W., Sadeghi, K. & Berry, M. J. II. Fine spatial information represented in a population of retinal ganglion cells. J Neurosci 31, 2145-2155 (2011). P

Gao, J., Schwartz, G., Berry, M. J. II. & Holmes, P. An oscillatory circuit underlying the detection of disruptions in temporally-periodic patterns. Network 20, 106-135 (2009).

Schwartz, G. & Berry, M. J. II. Sophisticated temporal pattern recognition in retinal ganglion cells. J Neurophysiol. 99, 1787-1798 (2008).

Schwartz, G., Taylor, S., Fisher, C., Harris, R. & Berry, M. J. II. Synchronized firing among retinal ganglion cells signals motion reversal. Neuron 55, 958-969 (2007).

Schwartz, G., Harris, R., Shrom, D. & Berry, M. J. II. Detection and prediction of periodic patterns by the retina. Nat Neurosci 10, 552-554 (2007).

Schwartz, G., Howard, M. W., Jing, B. & Kahana, M. J. Shadows of the past: temporal retrieval effects in recognition memory. Psychol Sci 16, 898-904 (2005).

* equal contribution

Reviews and viewpoints

Schwartz, G. W. & Rieke, F. Nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2. Journal of General Physiology 138, 283-290 (2011).

Cafaro, J., Schwartz, G. W. & Grimes, W. N. An expanding view of dynamic electrical coupling in the mammalian retina. J Physiol 589, 2115-2116 (2011).

Berry, M. J. II & Schwartz, G. The Retina As Embodying Predictions About the Visual World. in Predictions in the Brain (ed Bar, M.) Oxford University Press, Oxford, (2011).